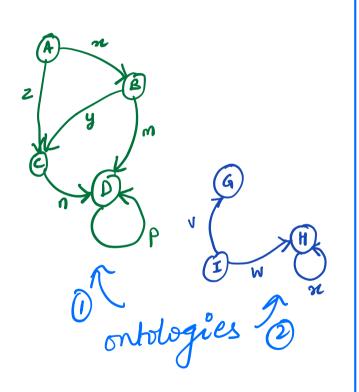
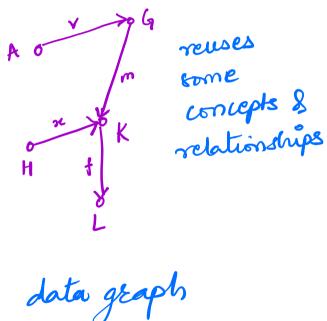


Using Ontology Design Patterns To Define SHACL Shapes

Harshvardhan J. Pandit, Declan O' Sullivan, Dave Lewis


pandith@tcd.ie @coolharsh55


witter ADAPT Centre - Trinity College Dublin - Ireland https://openscience.adaptcentre.ie/ > check out all

HOW TO VALIDATE???

& declare VS undeclared Assumption: Open vs Closed Inference Existence If I don't use a concept, do I Person Carre about its essistence?

Axioms

- Define a model for data & relationships -> AXIDMS
- Define constraints -> restrictions
- Define 'correctness'? -> by following constaints

 Provide validation? -> by testing against constaints

 & assessing consectness

Restrictions

Axioms may not be applicable because:

- Not all concepts / relations from ontology are being used in a data graph
- Concepts / relations are used, but their semantic meaning has changed

ODP is more generic than an ontology

i.e. abstraction

ODP can be more specific to the use-case

ie domain / context specific

ODP contains only needed axioms

i.e. only covering required concepts/relationships

ODP is modular

i.e. can be combined or used individually

Benefits

- 1. Fits model of data graph -> how data is populated in context
- 2. Modular -> reuse! specialise! abstraction!
- 3. Easier to integrate into larger putterns & ontologies

Okay... But still how to validate?

SHACL
Shapes and Constraints Language
W3C Recommendation, 20 July 2017
https://www.w3.org/TR/shacl/

SHALL - LORE"

- o closed world
- · defined using RDF
- o selectors
- · report generation
- o like ShEx

Approach

- Aim: Automate validation from data model i.e. ODP → SHACL
- Step1: Identify relevant OWL statements within constraint
- Step2: Generate Corresponding SHACL Shape

Requires: Mapping OWL → SHACL

> user > content ex: Tweet Validator You are at the a sh: Node Shape hash WOP 2018 workshop target Clars ex: Tweet. # ODP # 15W2 2018 MONTEREY, LA 90072018 SHACL SHAPE > location Tweet has min: 1 max: 1 · exactly 1 wer type: Usez type: Text · exactly 1 content type: Timestamp · exactly I date max:1 · O or I location

"Using Ontology Design Patterns To Define SHACL Shapes"

http://openscience.adaptcentre.ie/ | pandith@tcd.ie | @coolharsh55
WOP 2018 (ISWC 2018) ; Monterey California, USA ; Presented by: Harshvardhan J. Pandit

type: 4PS co-ordinates

Can this be extended to an Ontology?

Yes.

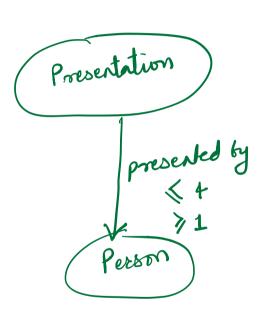
But the aim here is to validate the data graph that uses many ontologies, and where only some concepts/relationships are used.

Therefore, if SHACL shapes are generated from an ontology, they will have the same limitation as using the OWL axioms itself.

regument: Generale ar ontology for data graph
vs
Generale ODPs for data graph

Another advantage with ODP

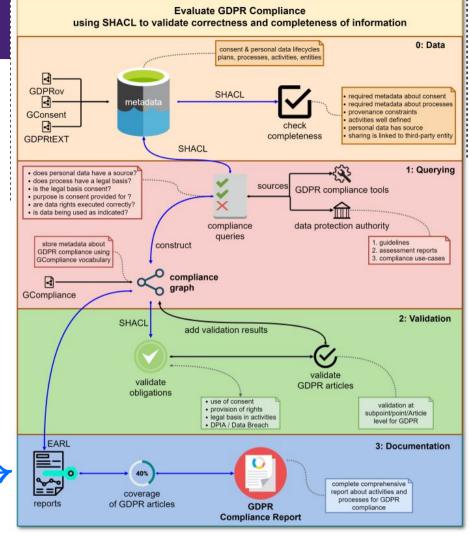
- Coherence
- If all constraints (shapes) are satisfied then the data can be said to be validated, and this information can be incorporated back into the data graph
- Validations can thus be 'layered' on top of each other
- Can the ODPs also be thus 'layered' or combined in this manner to create an ontology for representing the data model of the graph?



Converse Application

Use the ODP to visualise SHACL Shapes

```
ex: Presentation Shape
   a shi Node Shape
  target Class ex: Presentation
  Sh: Property [
       sh: Path ex: presenter
       sh: Class ex: Pesson
       sh: min Count 1
       sh: max bunt 4
```

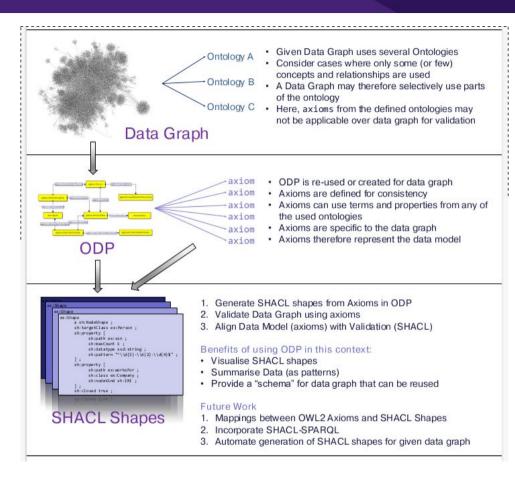


Future Work

- SHACL-SPARQL
- 2. owl2sparql
- **3.** Recursive Constraints

Target Application: GDPR Compliance

Modular Obligations → ODP ODP → validate using SHACL

poster presented at SEMANTICS 2018



--- POSTER ---

