
Building Ontologies by using Re-engineering
Patterns and R2RML Mappings

Freddy Priyatna1 and Boris Villazón-Terrazas1

1OEG-DIA, FI, Universidad Politécnica de Madrid, Spain
fpriyatna@delicias.dia.fi.upm.es,bvillazon@fi.upm.es

Abstract. The ontologization of non-ontological resources has led to
the design of several specific methods, techniques and tools. Among those
techniques, we have the Re-engineering Patterns. More specifically, we
have the Patterns for re-engineering NORs (PR-NOR) that define a pro-
cedure that transforms the NOR terms into ontology representational
primitives. Currently, the W3C RDB2RDF Working Group is at the fi-
nal stage of formalizing R2RML, a language for describing mappings
among RDB elements and RDF. In this paper we claim that it is possi-
ble to combine PR-NORs with R2RML mappings for building ontologies
from relational database content, i.e., transforming the database content
into an ontology schema by using Re-engineering Patterns and R2RML
mappings.

Key words: Re-engineering patterns, RDB2RDF, R2RML, Ontologies

1 Introduction

During the last decade, specific methods, techniques and tools were proposed
for building ontologies from existing knowledge resources. When we are trans-
forming non-ontological resources (NORs) [4] into ontologies, the transformation
process may follow one of the following approaches: (1) ABox transformation
[4], which transforms the resource schema into an ontology schema, and the re-
source content, into ontology instances; (2) TBox transformation [4], which
transforms the resource content into an ontology schema; or (3) Population ,
which transforms the resource content into instances of an available ontology.
The ABox transformation leaves the informal semantics of the transformed re-
sources mostly untouched, whereas, the TBox transformation tries to enforce a
formal semantics into them. Figure. 1 depicts the three types of transformation.

According to the survey described in [9], most of the available methods and
tools deal with ABox transformation and Population. However there are some
cases when it is useful to follow the TBox transformation [4], for example when
we have a taxonomy stored in a particular NOR. The ontologization of non-
ontological resources has led to the design of several specific methods, techniques
and tools [4]. Among those techniques, we have the Re-engineering Patterns,

Fig. 1. NOR Transformation into ontologies

within the context of the ODP1. More specifically, we have the Patterns for re-
engineering NORs (PR-NOR) that define a procedure that transforms the NOR
terms into ontology representational primitives. Nevertheless, PR-NORs do not
consider the implementation of the NOR, they just provide a general algorithm
for the transformation.

The majority of non-ontological resources underpinning the Web are imple-
menting in Relational Databases (RDB) [6]. RDB systems host a vast amount of
structured data in relational tables augmented with integrity constraints [5].
When we are transforming RDB content into ontologies, we can follow two
approaches (1) procedural/imperative approach, or (2) declarative approach,
by defining mappings between RDB and ontology elements. There are several
RDB2RDF mapping languages for describing transformation among RDB ele-
ments and ontologies [9, 7]. The RDB2RDF working group2 is at the final stage
of formalizing R2RML3, a standard language for expressing mappings from re-
lational databases to RDF datasets.

As we mentioned above, we provided a general algorithm to do the transfor-
mation for each of PR-NORs. However, in order to actually do the transforma-
tion, a user has to implement this algorithm in his choice of programming lan-
guage (Java, Scala, etc). On the other hand, we observed that although R2RML
mappings are normally used to generate ontology instances from database con-
tent (Population transformation), we figured out that when the database content
follows specific patterns such as PR-NORs, then R2RML mappings can be useful
in this situation. In this paper we propose to combine PR-NORs with R2RML
mappings for building ontologies from relational database content, i.e., trans-
forming the database content into an ontology schema by using Re-engineering
Patterns and R2RML mappings.

The rest of the paper is organized as follows. Section 2 provides the back-
ground knowledge, by describing PR-NORs and R2RML. Then, Section 3 presents
how we combine the PR-NORs with R2RML mappings for building the ontolo-

1http://ontologydesignpatterns.org
2http://www.w3.org/2001/sw/rdb2rdf/
3http://www.w3.org/TR/r2rml/

gies from relational database content, and includes two examples. Finally, Section
4 presents the conclusions and future work.

2 Background Knowledge

In this section we provide a brief description of the PR-NORs and R2RML.

2.1 Patterns for Re-engineering Non-Ontological Resources

The Patterns for Re-engineering Non-Ontological Resources (PR-NOR) [12] de-
fine a procedure that transforms the NOR terms into ontology elements. The
patterns describe the transformation of classification schemes, thesauri, and lex-
icons into ontologies. The patterns rely on the data model4 of the NORs. The
patterns define, for every data model of the NORs, a process (expressed as an al-
gorithm) with a well-defined sequence of activities in order to extract the NORs
terms, and then to map these terms to a conceptual model of an ontology. Nev-
ertheless, the patterns do not consider the implementation of the NOR, they just
provide a general procedure for the transformation. It is worth noting that these
patterns are included in the ODP Portal5. Table 1 lists the set of PR-NORs that
perform the TBox transformation approach.

Table 1. Set of patterns for re-engineering NORs that perform the TBox transforma-
tion approach.

NIdentifier Type of NOR NOR Data
Model

Target

1 PR-NOR-CLTX-01 Classification
Scheme

Path Enumera-
tion

Ontology Schema (TBox)

2 PR-NOR-CLTX-02 Classification
Scheme

Adjacency List Ontology Schema (TBox)

3 PR-NOR-CLTX-03 Classification
Scheme

Snowflake Ontology Schema (TBox)

4 PR-NOR-CLTX-04 Classification
Scheme

Flattened Ontology Schema (TBox)

5 PR-NOR-TSTX-01 Thesaurus Record-based Ontology Schema (TBox)

6 PR-NOR-TSTX-02 Thesaurus Relation-based Ontology Schema (TBox)

7 PR-NOR-LXTX-01 Lexicon Record-based Ontology Schema (TBox)

8 PR-NOR-LXTX-02 Lexicon Relation-based Ontology Schema (TBox)

In a nutshell, the main fields of a PR-NOR are:

4The data model[12] is the abstract model that describes how data is represented
and accessed. The data model can be different even for the same type of non-ontological
resource.

5http://ontologydesignpatterns.org/wiki/Submissions:ReengineeringODPs

– Name of the pattern
– Identifier of the pattern
– Use case, description in natural language of the re-engineering problem ad-

dressed by the pattern
– Input, description in natural language of the NOR, and its graphical repre-

sentation
– Output, description in natural language of the ontology created after apply-

ing the pattern, and its graphical representation
– Process, algorithm for the re-engineering process

2.2 R2RML

R2RML6 is a language for expressing mappings from relational databases to
RDF datasets. These mappings provide the ability to view existing relational
data in the RDF data model, expressed in a target ontology. The input to an
R2RML mapping is a relational database. The output is an RDF dataset that
uses predicates and types from the target ontology. It is worth mentioning that
R2RML mappings are themselves expressed as RDF graphs and written down
in Turtle syntax [2]. Figure 2 shows the elements of R2RML language

Fig. 2. An overview of R2RML

In a nutshell, an R2RML mapping points to logical tables to get data from
the database. A logical table can be (1) a database table, (2) a view, or (3) a
valid SQL query. Each logical table is mapped to RDF using a triples map. A

6http://www.w3.org/TR/r2rml/

triples map defines rules that map each row in the logical table to a set of RDF
triples. Those rules have two main parts (1) a subject map, which generates the
subject of all RDF triples that will be created from a logical table row; and (2)
multiple predicate-object maps that consist of predicate maps and object maps
(or referencing object maps). Triples are produced by combining the subject map
with a predicate map and object map, and applying these three to each logical
table row. It is possible that a triples map can contain graph maps that place
some or all of the triples into named graphs, but by default, all RDF triples are
in the default graph of the output dataset.

Next, we present a basic example in order to illustrate how to specify R2RML
mappings7. Let us consider the database depicted in Figure 3. This database
contains a table, one primary key, two columns, and one row.

Fig. 3. Example database

For the that database we have the following R2RML mapping

@pref ix r r : <http ://www.w3 . org /ns/ r2rml#> .
@pref ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .
@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pref ix ex : <http :// example . com/> .
@pref ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .
@base <http :// example . com/base/> .

<TriplesMap1> a r r : TriplesMap ;
r r : l o g i c a lTab l e [r r : tableName ”Student ”] ;
r r : subjectMap [r r : c l a s s f o a f : Person ;

r r : template ”http :// example . com/Student /{ID}/{Name}” ;] ;
r r : predicateObjectMap [r r : p r ed i c a t e ex : id ;

r r : objectMap [r r : column ”ID ” ;]] ;
r r : predicateObjectMap [r r : p r ed i c a t e f o a f : name ;

r r : objectMap [r r : column ”Name”]] .

Finally, it is worth mentioning that neither the RDB2RDF Use Cases and
Requirements 8 nor the R2RML mappings in the R2RML Test Cases document9

provide or say anything about generating ontologies from database content.

7Please refer to the R2RML specification and its testcases to check a detailed list
of R2RML mapping examples.

8http://www.w3.org/TR/rdb2rdf-ucr/
9http://www.w3.org/2001/sw/rdb2rdf/test-cases/

3 Combining PR-NORs and R2RML mappings

In this section we present how to generate ontologies from database content
by using PR-NORs and R2RML mappings. Our combination of PR-NORs and
R2MRL mappings is two-fold, first (1) we want to specialize the PR-NORs that
perform a TBox transformation by specifying Relational databases as NOR, (2)
we want to show that it is possible to generate ontology schema triples using
R2RML mappings.

Using R2RML mappings for transforming PR-NOR patterns brings two ben-
efits. The first benefit is since R2RML mappings are expressed in RDF, we can
store and reuse them. The second is, there are already several R2RML engines10,
therefore, it will be possible to execute the mappings and generate the ontologies
in a short time.

Using our approach, each PR-NOR has the corresponding R2RML mapping.
The mappings will be executed by an R2RML engine and the result of that
execution will generate an ontology represented as an RDF document.

All the patterns, mappings, and some other files (sql dump, result in graphical
representation etc) are available here at:

– Pattern Description : mappingpedia:pattern/SchemaPatterns/{PatternID}
– Mapping Algorithm : mappingpedia:pattern/SchemaPatterns/{PatternID}/algorithm.txt
– Mapping Example : mappingpedia:pattern/SchemaPatterns/{PatternID}/mapping-

example.ttl
– SQL General : mappingpedia:pattern/SchemaPatterns/{PatternID}/sql-general.sql
– SQL Example : mappingpedia:pattern/SchemaPatterns/{PatternID}/sql-example.sql
– RDF Result Example : mappingpedia:pattern/SchemaPatterns/{PatternID}/result-

example.nt

Where mappingpedia represents http://mappingpedia.linkeddata.es/

Next, we show examples of how to build R2RML mappings that correspond
to the PN-NORs patterns. We use snowflake model as the representation of clas-
sification schema pattern and term-based relational model as the representation
of thesaurus pattern.

PR-NOR-CLTX-03 : Pattern for re-engineering a classification scheme
following the snowflake data model into an ontology schema A classi-
fication scheme is a rooted tree of terms, in which each term groups entities by
some particular degree of similarity. The semantics of the hierarchical relation
between parent and children terms may vary depending on the context. The
snowflake data model [8] is a normalized structure for hierarchy representations.
In this case, the classification scheme items are grouped by levels or entities.
There are as many groups as levels the classification scheme has. Snowflake mod-
els are widely used on data warehouses to build hierarchical classifications on
structures known as dimensions. Some examples of dimension are Time, Product
Category, Geography, Occupations, etc. An example of snowflake data model can
be seen in Figure. 4. In this pattern the example is an occupation hierarchical

10http://www.w3.org/2001/sw/rdb2rdf/implementation-report/

Fig. 4. An example of Snowflake Data Model

classification hold on three different tables, one for each level (PROFESSIONI 0,
PROFESSIONI 1, PROFESSIONI 2).

The ontology generated will be based on the taxonomy architectural pattern
(AP-TX-01) [11]. Each term in the classification scheme is mapped to a class,
and the semantics of the relationship between children and parent terms are
made explicit by using an external resource. Figure. 5 illustrates the generated
ontology from the example. Note that although the transformation copies the

Fig. 5. Generated ontology from the example of Snowflake Data Model

the hierarchy expressed by the database content, the resulting ontologies consists
only the schema (collection of classes and their labels) without their individuals.
Hence, this is a T-Box transformation as we discussed in Section. 1.

Next we present the procedure that generates R2RML mapping correspond-
ing to the pattern. First, create an rr:TriplesMap instance for every table with
the table name as its rr:logicalTable value. Then create an rr:SubjectMap in-
stance for the TriplesMap with rdfs:Class as its rr:class and concatenation of
namespace base and primary key of the table as its rr:template value. Addi-
tionaly, the user may provide an rr:PredicateObjectMap instance that specifies
the name of the class. If the table doesn’t have a foreign key, it means that
the table is mapped into the root class of the ontology. Otherwise, create an
rr:PredicateObjectMap instance with rr:objectMap that joins the foreign key
with the referenced primary key.

Input: The tables of database tables, the URI of the target class classURI
Output: R2RML Mapping Document MD
1: MD ← createMappingDocument()
2: for t ∈ tables do
3: TM ← createTriplesMap()
4: TM.logicalTable.tableName ← t.tableName
5: TM.subjectMap.class ← rdfs:Class
6: TM.subjectMap.template ← CONCAT(classURI, table.PKColumn)
7: TM.predicateObjectMap[0].predicate ← rdfs:label
8: TM.predicateObjectMap[0].objectMap.column ← t.LabelColumn
9: if t.PK = {} then

10: TM.predicateObjectMap[1].predicate ← rdfs:subClassOf
11: TM.predicateObjectMap[1].objectMap.constant ← classURI
12: else
13: TM.predicateObjectMap[1].predicate ← rdfs:subClassOf
14: TM.predicateObjectMap[1].objectMap.constant ← classURI
15: end if
16: PUT(MD, TM)
17: end for
18: return MD

Listing 1.1. R2RML mappings corresponding to the example of Snowflake Data
Model
<TriplesMapProfess ione0> a r r : TriplesMap ;

r r : l o g i c a lTab l e [r r : tableName ” Pro f e s s i one0 ”] ;
r r : subjectMap [r r : c l a s s r d f s : Class ; r r : termType r r : IRI ;

r r : template
”http :// example . org / r e sou r c e / Pro f e s s i on e { id0 }” ;] ;

r r : predicateObjectMap [r r : p r ed i c a t e r d f s : l a b e l ;
r r : objectMap [r r : column ”desc0 ”] ;] ;

r r : predicateObjectMap [r r : p r ed i c a t e r d f s : subClassOf ;
r r : objectMap [r r : constant

”http :// example . org / r e sou r c e / Pro f e s s i on e ”] ;] ; .

<TriplesMapProfess ione1> a r r : TriplesMap ;
r r : l o g i c a lTab l e [r r : tableName ” Pro f e s s i one1 ”] ;
r r : subjectMap [r r : c l a s s r d f s : Class ; r r : termType r r : IRI ;

r r : template
”http :// example . org / r e sou r c e / Pro f e s s i on e { id1 }” ;] ;

r r : predicateObjectMap [r r : p r ed i c a t e r d f s : l a b e l ;
r r : objectMap [r r : column ”desc1 ”] ;] ;

r r : predicateObjectMap [r r : p r ed i c a t e r d f s : subClassOf ;
r r : objectMap [r r : termType r r : IRI ;

r r : parentTriplesMap <TriplesMapProfess ione0 >;
r r : j o inCond i t i on [

r r : c h i l d ” id0 ” ; r r : parent ” id0 ” ;] ;] ;] ; .

<TriplesMapProfess ione2> a r r : TriplesMap ;
r r : l o g i c a lTab l e [r r : tableName ” Pro f e s s i one2 ”] ;
r r : subjectMap [r r : c l a s s r d f s : Class ; r r : termType r r : IRI ;

r r : template

”http :// example . org / r e sou r c e / Pro f e s s i on e { id2 }” ;] ;
r r : predicateObjectMap [r r : p r ed i c a t e r d f s : l a b e l ;

r r : objectMap [r r : column ”desc2 ”] ;] ;
r r : predicateObjectMap [r r : p r ed i c a t e r d f s : subClassOf ;

r r : objectMap [r r : termType r r : IRI ;
r r : parentTriplesMap <TriplesMapProfess ione1 >;

r r : j o inCond i t i on [
r r : c h i l d ” id1 ” ; r r : parent ” id1 ” ;] ;] ;] ; .

PR-NOR-TSTX-02 : Pattern for re-engineering a thesaurus following
the relation-based data model into an ontology schema A thesaurus
represents the knowledge of a domain with a collection of terms and a limited
set of relations between them. The relation-based data model [10] is a normalized
structure, in which relationship types are not defined as fields in a record, but
they are simply data values in a relationship record, thus new relationship types
can be introduced with ease.

As an example, the AGROVOC Thesaurus is an structured and controlled
vocabulary designed to cover the terminology of all subject fields in agriculture,
forestry, fisheries, food and related domains. This thesaurus is available at http://

www.fao.org/agrovoc/. See Figure. 6 for the graphical representation of the thesaurus.

Fig. 6. An example of Thesaurus Relational-based Data Model

The ontology generated will be based on the lightweight ontology architec-
tural pattern (AP-LW-01)[11]. Each thesaurus term is mapped to a class. For
the disambiguation of the semantics of the BT, NT, RT and UF relations among
thesaurus terms the pattern relies on an external resource. In our case, the se-
mantics of the BT, NT, RT and UF relations are encoded in rr:sqlQuery of the
R2RML mappings. Figure. 7 illustrates the generated ontology from the exam-
ple.

Next, we present the procedure to generate R2RML mappings corresponding
to this pattern. First, create an rr:TriplesMap instance whose rr:logicalTable is
a view of join result of Terminology table, Terms Relationship table, and Rela-
tionship Type table. We let the user decide whether the join type is INNER or
LEFT OUTER. In the view, specify also the translation from Relationship Type
table values into skos properties using SQL CASE. Then, create an instance of

Fig. 7. The generated ontology from the example of Thesaurus Relational-based Data
Model

rr:SubjectMap with rdfs:Class as its rr:class. The URI values is specified through
rr:template as the concatenation of Term class namespace with the value of the
table’s primary key. Additionaly, an rr:PredicateObjectMap instance can be pro-
vided to specify the class name. Then, create another rr:PredicateObjectMap
instance that maps a property to the the relationship between one term with
another specified in the SQL CASE value provided in the view.

Input: Table Term TblTerm, Table Relationship TblRel, Table Relationship
type TblRelType, Term Class URI classURI

Output: R2RML Mapping Document MD
1: MD ← createMappingDocument()
2: TM ← createTriplesMap()
3: V = TblTerm ./ TblRel ./ TblRelType
4: TM.logicalTable.sqlQuery ← V
5: TM.subjectMap.class← rdfs : Class
6: TM.subjectMap.template ← CONCAT(classURI, TblRel.TermCode1)
7: TM.predicateObjectMap[0].predicate← rdfs : label
8: TM.predicateObjectMap[0].objectMap.column← TblTerm.Term
9: TM.predicateObjectMap[1].predicateMap.column← linkURIObject

10: TM.predicateObjectMap[1].objectMap.template ←
CONCAT (classURI, TblRel.TermCode2)

11: TM.predicateObjectMap[2].predicateMap.column← linkURIData
12: TM.predicateObjectMap[2].objectMap.template ←

CONCAT (classURI, TblRel.Term)
13: PUT(MD, TM)
14: return MD

Listing 1.2. R2RML mappings corresponding to the example of Thesaurus
Relation-based Data Model
<TriplesMapTerm> a r r : TriplesMap ;

r r : l o g i c a lTab l e [r r : sqlQuery ”””
SELECT t . TermCode , t . Term , t l . TermCode2

, l t . LinkDesc , l t . LinkTypeID
, CASE l t . LinkAbr

WHEN ’BT’ THEN ’ skos : broader ’
WHEN ’NT’ THEN ’ skos : narrower ’
WHEN ’RT’ THEN ’ skos : r e l a t ed ’

END AS linkURIObject
, CASE l t . LinkAbr

WHEN ’UF’ THEN ’ skos : a l tLabe l ’
END AS linkURIData

FROM agrovocterm t
LEFT OUTER JOIN terml ink t l

ON t . TermCode = t l . TermCode1
LEFT OUTER JOIN l ink type l t

ON t l . LinkTypeID = l t . LinkTypeID
”” ”] ;

r r : subjectMap [r r : c l a s s r d f s : Class ; r r : termType r r : IRI ;
r r : template

”http :// example . org / r e sou r c e /Term{TermCode } ” ;] ;

r r : predicateObjectMap [r r : p r ed i c a t e r d f s : l a b e l ;
r r : objectMap [r r : column ”Term ”] ;] ;

r r : predicateObjectMap [r r : predicateMap [
r r : column ” linkURIObject ” ; r r : termType r r : IRI] ;

r r : objectMap [r r : template
”http :// example . org / r e sou r c e /Term{TermCode2 } ”] ;] ;

r r : predicateObjectMap [r r : predicateMap [
r r : column ” linkURIData ” ; r r : termType r r : L i t e r a l] ;

r r : objectMap [r r : template
”http :// example . org / r e sou r c e /Term{Term } ”] ;] ;

.

We have seen two examples of using R2RML mappings in order to generate
ontologies from PR-NORs. There are other approaches for this goal, although
our approach is better for several reasons. For example, using other RDB2RDF
languages instead of R2RML, such as R2O [1] or D2RQ [3] can be employed.
Unlike R2RML, both R2O and D2RQ do not permit the use of arbitrary SQL
queries as the logical table, which can be useful for joining multiple tables which
some complex conditions. Using a standard mapping language also bring bene-
fits on the practical side, as multiple implementations are available. Even D2R
system, which initially implemented as D2RQ engine, will also give support to
R2RML. Other possible approach is not to use R2RML or any RDB2RDF map-
ping languages, but using ad-hoc approach like creating a custom program for
each of the pattern. However, this approach can be considered inferior as the the
reusability aspect is lower than reusing mappings, not to mention the time has
to be invested to create the custom program instead of just choosing one of the
available R2RML implementations, such as Morph11.

4 Conclusions and Future Work

In this paper we have presented an approach that combines PR-NORs with
R2RML mappings for building ontologies from relational database content, i.e.,
transforming the database content into an ontology schema by using Re-engineering
Patterns and R2RML mappings. Furthermore, we have seen that besides for
generating data-triples (triples that describes instances of an ontology), R2RML
mappings are useful also to generate schema-triples (triples that describe the
schema of an ontology).

In the future, we will continue identifying other Re-engineering patterns that
may take benefit from R2RML mappings. We will explore the possibility to
combine R2RML mappings with other data-source type, such as XML, CSV or

11https://github.com/jpcik/morph

spreadsheets. Because R2RML mappings are RDF documents, it is possible to
store those mappings in a triple store. Once those mappings have been stored in
the triple store and annotated with meta-data properties, users can pose query
the triple store in order to get all mappings correspond to a specific pattern. For
example, user can pose a SPARQL query SELECT * FROM {?m a mapping. m

hasPattern ?p. FILTER REGEX(?p, "Snowflake")}, and the answers will be
all mappings corresponding to the snowflake data model pattern. The system is
currently under development and being populated with mappings and patterns
and we plan to report this system as future work.

Acknowledgments: This work has been supported by the PlanetData (FP7-
257641), BabelData (TIN2010-17550), and myBigData (TIN2010-17060) projects.
We would like to kindly thank all W3C RDB2RDF Working Group members.

References

1. J. Barrasa, Ó. Corcho, and A. Gómez-pérez. R2o, an extensible and semantically
based database-to-ontology mapping language. In in In Proceedings of the 2nd
Workshop on Semantic Web and Databases (SWDB2004, 2004.

2. D. Beckett and T. Berners-Lee. Turtle-terse rdf triple language. Syntax, 28(Jan-
uary), 2008.

3. C. Bizer and A. Seaborne. D2rq-treating non-rdf databases as virtual rdf graphs.
In Proceedings of the 3rd International Semantic Web Conference (ISWC2004),
page 26, 2004.

4. C. Caracciolo, J. Heguiabehere, V. Presutti, and A. Gangemi. Initial network of
fisheries ontologies. Technical report, NeOn project deliverable D7.2.3, 2009.

5. C. Date. An introduction to database systems, volume 2. Addison Wesley Publish-
ing Company, 1983.

6. B. He, M. Patel, Z. Zhang, and K. C.-C. Chang. Accessing the deep web. Commun.
ACM, 50(5):94–101, May 2007.

7. M. Hert, G. Reif, and H. Gall. A comparison of rdb-to-rdf mapping languages.
In Proceedings of the 7th International Conference on Semantic Systems, pages
25–32. ACM, 2011.

8. E. Malinowski and E. Zim·nyi. Hierarchies in a multidimensional model: From
conceptual modeling to logical representation. Data and Knowledge Engineering,
2006.

9. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau Jr, S. Auer, J. Sequeda,
and A. Ezzat. A survey of current approaches for mapping of relational databases
to rdf. W3C RDB2RDF XG Incubator Report, page W3C, 2009.

10. D. Soergel. Data models for an integrated thesaurus database. Comatibility and
Integration of Order Systems, 24(3):47–57, 1995.

11. M. C. Suárez-Figueroa, S. Brockmans, A. Gangemi, A. Gómez-Pérez, J. Lehmann,
H. Lewen, V. Presutti, and M. Sabou. Neon modelling components. Technical
report, NeOn project deliverable D5.1.1, 2007.

12. B. Villazón-Terrazas. A Method for Reusing and Re-engineering Non-ontological
Resources for Building Ontologies. IOS Press, 2012.

