
Diverging Views of SHACL

Peter F. Patel-Schneider pfpschneider@gmail.com

Nuance Commmunications

SHACL is a new recommendation being developed by the W3C Data Shapes
Working Group. SHACL is designed to address the need for a declarative
language to validate or describe the contents of an RDF graph. This amounts
roughly to checking whether an RDF graph satisfies a set of constraints.
However, there are several diverging views of just how RDF graph validation
should work, what kinds of constraints are needed for it, and how they should
interact. This led to some difficult discussions in the working group. I will
discuss these diverging views and how the current definition of SHACL
matches against them.

This talk assumes familiarity with RDF and RDFS and some knowledge of
OWL and SPARQL.

Basis of this Talk

Current documents on SHACL

SHACL working draft [1] and its current editors' draft

My participation in the W3C Data Shapes Working Group

I am no longer a member as Nuance has quit W3C

My analyses of and work on related validation formalisms

Description Logics Constraints [4,5], Shape Expressions [2]

My analyses of current commercial validation systems for RDF

Stardog ICV [7], SPIN Constraints [6]

My analyses of and work on SPARQL,

particularly EXISTS [8]

 Shapes Constraint Language (SHACL)

Designed to determine whether the data in an RDF graph is

directly suitable for processing by some application

Is there sufficient information in the graph (maybe after inferencing)?

Does the information in the graph match expectations?

SHACL validates the contents of an RDF graph against some expectations

Secondary purposes

Describe which graphs validate against some shapes

Help build user and other interfaces that build or use valid graphs

Product of W3C Data Shapes Working Group

More information at www.w3.org/2014/data-shapes

Main document: Shapes Constraint Language (SHACL)

Why Care About SHACL

It's a potential W3C recommendation

It fills a gap in the W3C Semantic Web - validating content of RDF graphs

It could end up as a suceessor to SPIN Constraints [6] and maybe to

Stardog ICV [7]

Divergent Views of Validating RDF Graphs

Work on SHACL started with groups espousing two divergent views

Schema View (from Shape Expressions [2])

It's like schema recognition (in, e.g., Relax NG), but unordered.

1.

Constraint View

It's just checking integrity constraints.

OWL variant (from description logic constraints [4], Stardog ICV [7])

Constraints are OWL axioms intepreted in a closed world setting

1.

SPARQL variant (from SPIN Constraints [6])

Constraints are just pretty syntax for SPARQL queries.

Just SPARQL. 2. SPARQL plus extensions.1.

2.

2.

This talk is about these divergent views and variants and how they relate to

the current version of SHACL.

RDF Graph
:Mary rdf:type :Taxpayer;
 :name "Mary Smith"; :age 37;
 :spouse :Chris;
 :dependent :Chris, :Jeff;
 :SSN 123456789 .
:Chris rdf:type :Person;
 :name "Chris Smith"; :age 36;
 :SSN 234567890 .
:Jeff rdf:type :Dependent;
 :name "Jeff Smith"; :age 9;
 :gender male .
:Susan rdf:type :Person;
 :name "Susan Smith" .

Either RDFS Ontology
:Taxpayer rdfs:subClassOf :Person .
:Dependent rdfs:subClassOf :Person .
:name rdfs:range xsd:string .
:age rdfs:range xsd:integer .
:spouse rdfs:domain :Person; rdfs:range :Person.
:dependent rdfs:domain :Person;
 rdfs:range :Dependent .

Or OWL Ontology
:Person ⊑ =1:name ∧ ∀:name xsd:string
 ∧ =1:age ∧ ∀:age xsd:integer
 ∧ ∀:spouse :Person
:Dependent ⊑ :Person ∧ =1:SSN ∧ ∀:SSN xsd:integer
:Taxpayer ⊑ :Person
 ∧ =1:SSN ∧ ∀:SSN xsd:integer
 ∧ ∀:dependent :Dependent

This all works fine, as far as it goes, but there is something missing.

Semantic Web

:Mary rdf:type :Taxpayer;
 :name "Mary Smith"; :age 37;
 :dependent :Chris, :Jeff;
 :spouse :Chris;
 :SSN 123456789 .
:Chris rdf:type :Person;
 :name "Chris Smith"; :age 36;
 :SSN 234567890 .
:Jeff rdf:type :Dependent;
 :name "Jeff Smith"; :age 9;
 :gender male .
:Susan rdf:type :Person;
 :name "Susan Smith" .

Only typing for :Chris is :Person

No :SSN provided for :Jeff

Extraneous :gender for :Jeff

:Susan disconnected

Want to be able to discover these problems

Application may barf if it doesn't see expected values or may require values,

e.g., to fill out forms

Describe actual output or required input for application

Want to be able to "validate" an RDF graph against some expectations.

What's Missing?

Validation

But what is validation (for RDF graphs)?

What is validation related to?

How can validation be specified?

Two different views of validation:

Validation as constraint checking

Validation as schema recognition

Constraint View of Validation

Validation is just checking constraints (against the graph)

"I need a graph where all the instances of :Taxpayer have a string value for

their name and an integer value for their age and all their dependents are

instances of :Dependent"

Constraint are independent of each other

Constraints don't need to cover entire graph

Most constraints on RDF graphs target members of a class

Generally simple to validate constraints on RDF graphs (model checking)

But very difficult if data is an OWL KB

Data
:Mary rdf:type :Taxpayer;
 :name "Mary Smith"; :age 37;
 :dependent :Chris, :Jeff;
 :spouse :Chris;
 :SSN 123456789 .
:Chris rdf:type :Person;
 :name "Chris Smith"; :age 36;
 :SSN 234567890 .
:Jeff rdf:type :Dependent;
 :name "Jeff Smith"; :age 9;
 :gender male .
:Susan rdf:type :Person;
 :name "Susan Smith" .
:Mary rdf:type :Person . (!)
:Jeff rdf:type :Person . (!)

Need to have typing available,
either explicitly, or from
inference against a simple
ontology, or via some other
means

Constraints
:Person ⊑ =1:name & ∀:name xsd:string
 & =1:age & ∀:age xsd:int
:Dependent ⊑ :Person
 & =1:SSN & ∀:SSN xsd:integer
:Taxpayer ⊑ :Person
 & =1:SSN ∧ ∀:SSN xsd:integer
 & ≤6 :dependent
 & ∀:dependent :Dependent

NB: These are not OWL axioms as they
work under a "closed world" assumption.

Violations

:Susan has no :age specified

:Jeff has no :SSN specified

:Chris does not belong to

:Dependent

:Mary might have more than 6

dependents

Constraint View of Validation

Schema View of Validation

Validation is like schema recognition (in, e.g., Relax NG), but unordered.

"I need (will produce) a graph containing a node with type :Taxpayer and

name a string and :SSN an integer and zero to ten dependents, each of

which has a string name and integer :SSN and :age; and no other

information"

Call the things being recognized shapes

Each shape component matches different links in the graph

Just like each bit of Relax NG schemas match different parts of an XML

document

Each link in graph must be matched by some shape component

Can easily be difficult to determine matches even for RDF graphs

Need to consider multiple ways to match

Data
:Mary rdf:type :Taxpayer;
 :name "Mary Smith"; :age 37;
 :dependent :Chris, :Jeff;
 :spouse :Chris;
 :SSN 123456789 .
:Chris rdf:type :Person;
 :name "Chris Smith"; :age 36;
 :SSN 234567890 .
:Jeff rdf:type :Dependent;
 :name "Jeff Smith"; :age 9;
 :gender male .
:Susan rdf:type :Person;
 :name "Susan Smith" .

:Mary rdf:type :Person .
:Jeff rdfs:type :Person .

Type links often not needed

Shapes
<Person> { rdf:type (:Person) ? ,
 :name xsd:string , :age xsd:integer }
<Taxpayer> { &<Person> ,
 rdf:type (:Taxpayer) , :SSN xsd:integer ,
 :dependent @<Person> {0,1},
 :dependent @<Dependent> {0,5},
 .-:dependent @<UniversalShape>* }
<Dependent> { &<Person> , :SSN xsd:integer }
<UniversalShape> { . @<UniversalShape>* }

Matches

Chris matches :Dependent but not

:Person

Jeff does not match :Dependent or

:Person
Extra rdf:type and :gender, missing

:SSN

Mary does not match :Taxpayer
Catchall matches :spouse, but not Jeff

NB: Can have up to 6 dependents!

All links consumed

Schema View of Validation

Constraint View Semantics (OWL Variant)

The meaning of an RDF graph is its Herbrand interpretation

except that literals are treated as their values not their syntax

i.e., (roughly) the graph itself treated as facts

maybe after RDFS completion of the graph

This interpretation treats each blank node as different from other nodes

Constraints are given their OWL Full (!) meaning

A shape is satisfied if the OWL axiom is true in the Herbrand interpretation

Model checking with only one model — cheap!

Schema View Semantics (One Variant)

New semantics for RDF graphs (but quite standard)

The meaning of an RDF graph is its graph structure

Each blank node is treated as different from all other nodes

Literals are their syntax (maybe)

A set of shapes is satisfied by an RDF graph if there is a mapping from

nodes in the graph to shapes (or to non-empty sets of shapes) such that

each node satisfies the/each shape that it is mapped to.

Shapes are satisfied by a node if the node satisfies the local parts of the

shape and its links can be assigned to non-local parts in a way that satisfies

their numbers and the link values are mapped to their non-local shape

Initial mapping from nodes to shapes looks costly

Sometimes this can be done cheaply, but in many cases it is expensive

Can set initial requirements for mapping, e.g., Mary must map to

TaxpayerShape

Constraint View

Shapes, containing

constraints (both local and on

property values)

target selectors

Constraints satisfied

independently

Targeting obviates need for

recursion

Shapes work on their targeted

nodes

Can ignore nodes and links

Basically model checking the

graph

Inexpensive, easy to

implement

Schema View

Named shapes, containing

constraints (both local and on

property values)

Constraints satisfied additively

Recursive shapes needed

Shapes match against nodes,

consuming links

Entire graph must be consumed

Requires assigning nodes to

shapes

Can be expensive and hard to

implement

The Two Views Compared

Data
:i1 :p :i1 .
:i2a :p :i2b .
:i2b :p :i2a .

Shapes
<UniversalShape> {
 . @<UniversalShape>* }

<S1> { :p !@<S1> }

Mappings (NB: Two!)
M(:i1) = { UniversalShape }
M(:i2a) = { UniversalShape, S1 }
M(:i2b) = { UniversalShape }

M(:i1) = { UniversalShape }
M(:i2a) = { UniversalShape }
M(:i2b) = { UniversalShape, S1 }

Schema View

Needs recursive shapes, e.g.,

UniversalShape

Recursion works acceptably with simple

constructs

Recursion has problems with negation

No useful mappings

Two different mappings — choose

which one?

So no recursion through negation (and

some other constructs)

ISSUE: Recursive Shapes and Data Loops

Data
:i1 rdf:type :T1 .
:i1 :p :i1 .

:i2a rdf:type :T2 .
:i2a :p :i2b .
:i2b :p :i2a .

:i3 y :i2a .

Shapes
:T1 ⊑ ∀:p ! :T1
:T2 ⊑ ∀:p ! :T2
:i3 ∈ ∀y :T3
:T3 = ∀:p :T3

Violations

First shape: :i1

Second shape:

none

Other shapes:

none?

Constraint View

Doesn't need recursive shapes (nearly as

much)

No sub-shapes in SPIN Constraints or Stardog

ICV

Adding sub-shapes is useful, but leads to

recursion

What is the meaning of simple recursion?

No guidance from description logic constraints

Maximal satisfaction: looping is success

Recursion through negation is again a problem

Potential solutions:

No recursion at all **

No recursion through negation

Encountering a recursion loop is an error

ISSUE: Recursive Shapes and Data Loops

Analysis So Far

Two quite different views:

Different basic motivations: constraints vs schemas

Different triggering: targetting vs mapping/matching

Different results: violations vs matches

Different formal semantics

Differential need for recursive shapes

Different expressive power

Not all that different if certain extensions are made on either side

Different complexity: easy vs mostly difficult

Schema-Constraints Reconciliation?

Reconciliation not really possible

Big difference between conjunctive and additive

Schema view has complex and difficult validation
Additive constructs need to make choices

There are easy cases but these are essentially the conjunctive ones

Schema view needs recursive shapes because there is no targetting

Could add targetting but that would be even more complex

How about adding some limited additive pieces to constraint view?

Already done in counting constructs

Could add a partitioning component, but that can easily result in difficult

validation

Adding global coverage would also result in difficult validation

THE FIRST DECISION

Choose between constraint view and schema view

Outcome: SHACL is based on the constraint view of validation

Constraint view has commercial implementations: SPIN Constraints,

Stardog ICV

Constraint view has easier implementation

Constraint view is better understood?

More on this later

SHACL Shape
s:s1 rdf:type sh:Shape ;
 sh:targetClass :Person ;
 sh:nodeKind sh:IRI ;
 sh:stem "http://p.google.com/";
 sh:property [
 sh:predicate :age ;
 sh:minCardinality 1;
 sh:maxCardinality 1;
 sh:datatype xsd:integer] ;
 sh:property [
 sh:predicate :name ;
 sh:uniqueLang true ;
 sh:datatype xsd:string ;
 sh:minLength 5] ;
 sh:property [
 sh:predicate :child ;
 sh:class :Person ;
 sh:shape [a sh:Shape ; ...]];
 sh:property [
 sh:path (:child :age);
 sh:lessThan :age] .

Shapes with

targeting of:

all members of a class (OWLish?)

a particular node (OWLish)

all subjects of a property (OWLish)

all objects of a property (OWLish)

constraints (local or all path values):

class membership (OWLish?)

datatype membership (OWLish?)

IRI vs blank node vs literal

membership in a list (OWLish)

comparing vs a constant (OWLish)

string length and regex match

(OWLish for literals, not IRIs)

validate against another shape

(OWLish if non-recursive)

constraints for path(s):

number of values for path

(OWLish)

path has a particular value

(OWLish)

unique value for each language

(could be OWLish)

same/different set of values for two

paths (could be OWLish)

compare value sets for two paths

(could be OWLish)

boolean combinations (OWLish)

no values for unmentioned properties

recursion (but not currently)

SHACL

Relationship Between RDF(S) and SHACL

SHACL uses RDF literals and RDF datatypes

But what are literals and datatypes in SHACL?

Values and sets, as in RDF Semantics (OWLish)

Pieces of syntax, as in RDF graph

Either, depending on the construct (SPARQLish) **

SHACL uses class membership (as does RDF and RDFS)

But what is class membership in SHACL?

What RDFS says: in class extension in RDFS interpretations (OWLish)

What RDF says: direct rdf:type link to class (can be OWLish)

Something else: e.g., rdf:type/rdfs:subClassOf* path to class (SPARQLish) **

s:s2 rdf:type sh:Shape ;
 sh:targetClass :Person ;
 sh:nodeKind sh:IRI ;
sh:property [
 sh:predicate :child ;
 sh:class :Person ;
 sh:shape s:s3] .
s:s3 rdf:type sh:Shape ;
 sh:nodeKind sh:blankNode.

SELECT ?this WHERE {
 ?this rdf:type/rdfs:subClassOf* :Person .
 FILTER ! (isIRI(?this)
 && (! EXISTS { ?this :child ?that .
 FILTER NOT EXISTS {
 ?that rdf:type/rdfs:subClassOf :Person.} })
 && (! EXISTS { ?this :child ?that .
 FILTER NOT EXISTS {
 SELECT ?that WHERE {
 FILTER ! (isBlank(?that)) } } }))
}

SPARQL Semantics for SHACL

Some SHACL constructs don't fit well into OWL semantics

So use SPARQL as basis for SHACL?

Meaning of SHACL is specified by translation to SPARQL

Each shape becomes a SPARQL query

Results of queries become violations

Can extend SHACL by using SPARQL code directly

OWL-SPARQL Semantics Reconciliation

OWL semantics can be implemented in SPARQL [4,5]

Is it possible to have OWL semantics as normative and SPARQL semantics

as an implementation method?

Not easily
SPARQL-only bits (SPARQL class membership, looking at syntax of literals, looking at

IRIs, unmentioned properties)

recursion (no recursion now, but desire still remains)

Extending OWL semantics to most of these is possible but difficult [5]

SPARQL semantics can get effect of RDFS semantics by adding the RDFS

inferences to an RDF graph

THE SECOND DECISION

Choose between OWL semantics and SPARQL semantics

Outcome: SHACL's semantics are via translaion to SPARQL

SPARQL semantics is more flexible

SPARQL semantics provides direct implementation path

SPARQL semantics easily handles things like

checking IRI vs blank node vs literal

requiring IRIs to have a certain prefix

requiring particular datatypes for literals

unmentioned properties have no values

SPARQL semantics can handle recursion ?

Another SPARQL Translation for SHACL

SPARQL translation sketched above can't handle recursion

A different approach is to instead translate a shape to multiple queries and

use some "glue" code

Separate query to select the target nodes

Separate query for each constraint of each shape

External glue says how target results initiate constraint queries

Connection to sub-shapes employs SPARQL function call glue

Glue has to be inside SPARQL so that blank nodes are preserved

s:s2 rdf:type sh:Shape ;
 sh:targetClass :Person ;
 sh:nodeKind sh:IRI ;

 sh:property [
 sh:predicate :child ;
 sh:class :Person ;

 sh:shape s:s3] .

s:s3 rdf:type sh:Shape ;
 sh:nodeKind sh:blankNode.

t: SELECT ?this WHERE {
 ?this rdf:type/rdfs:subClassOf :Person . }
c1: SELECT $this WHERE {
 FILTER (! isIRI($this)) }
c2: SELECT $this WHERE {

$this :child ?value .
 FILTER NOT EXISTS {
 ?value rdf:type/rdfs:subClassOf :Person . }}
c3: SELECT $this WHERE {

$this :child ?value .
 FILTER NOT EXISTS sh:hasShape(?value,c4)
c4: SELECT $this WHERE {
 FILTER (! isBlank($this)) }

Controlling code needs to feed results of target query to constraint queries

Constraint queries are run with $this pre-bound

pre-binding is widely implemented, but poorly defined

sh:hasShape is a glue function that runs the named query

Deep inside SPARQL processing but calls other SPARQL queries

Results in a top-down order of evaluation, i.e., different from SPARQL

Another SPARQL Translation (Simplified)

THE THIRD DECISION

Choose whether SPARQL translation should use extensions to
SPARQL

Outcome: SHACL uses extensions to SPARQL

pre-binding, sh:hasShape, and more

Using extensions permits recursion

Using extensions produces small SPARQL queries

Issues:

Requires SPARQL function that calls SPARQL queries

Results in visible top-down evaluation order

Requires use of pre-binding

Each query is run multiple times

Direct Usage
s:sc rdf:type sh:Shape ;
 sh:sparql [sh:select
 """SELECT $this ?value WHERE {
 $this $PATH ?value
 FILTER NOT EXISTS {
 $this rdf:type :Person } }"""
].

Parameterized Usage
s:sc rdf:type sh:Shape ;
 se:directClass :Person .

Parameterized Definition
se:directClassComponent
 rdf:type sh:ConstraintComponent ;
 sh:parameter [
 sh:predicate se:directClass ;
 sh:nodeKind sh:IRI ;
 sh:description "Direct class"] ;
 sh:propertyValidator [sh:select
 """SELECT $this ?value WHERE {
 $this $PATH ?value .
 FILTER NOT EXISTS {
 $this rdf:type $class } }"""] ;
 sh:shapeValidator [sh:select
 """SELECT $this ?value WHERE { ... }"""].

Extending SHACL with SPARQL

So far SPARQL is just used to provide the meaning for SHACL constructs

SHACL is not a universal language, so allow (parameterized) SPARQL code

Anything that can be done in SPARQL is part of SHACL

Extension exposes translation to SPARQL

SHACL now has little need for

recursion

Target selection and classes

replace recursion in many cases

Recursion opens up a form of

recognition, not checking

:polentone rdf:type sh:Shape ;
 sh:property [
 sh:predicate :birthPlace ;
 sh:class :ItalyNorthOfPo]
 sh:property [
 sh:predicate :knows ;
 sh:shape :polentone] ;

Translation to SPARQL has been

chosen in part because it can

support recursion

Removing recursion would allow

different SPARQL translations

Implement SHACL on top of

unmodified SPARQL

implementations

No need for pre-binding

Validate RDF graphs accessible

only via SPARQL endpoints

Recursion Revisited

Problems Using SPARQL for/in SHACL

Core of SHACL, a simple language, depends on a large and complex

language

SPARQL definition [8] has problems that affect SHACL

No definition for pre-binding so SHACL needs its own
Every definition for pre-binding in SHACL hasn't worked

EXISTS in SPARQL has errors and counter-intuitive aspects
Counter-intutive combination with blank nodes, MINUS, subqueries

Implementations do not follow definition

Implementations differ

See poster at ISWC [9]

To be viable, SHACL needs fixes to SPARQL

These fixes are slow in coming

Current Status of SHACL

Complete core language (maybe an addition or two to be done)

No recursion

Complete extension mechanism (very complex)

Not only shapes and constraints but also functions and more

Meaning of SHACL given as translation to SPARQL (broken)

Uses a form of pre-binding (broken)

Uses an extension function (questionable)

Imposes a top-down execution order (inefficient)

SPARQL used as SHACL extension mechanism (broken)

Exposes above problems to SHACL coders

Lots of other problems remain in SHACL document

Difficulties in Producing SHACL

Clash between several groups with divergent views of SHACL

Schemas vs constraints1.

SPARQL vs non-SPARQL semantics2.

Just SPARQL or SPARQL plus extensions3.

Need for formality (not addressed earlier)4.

Groups did not converge, and actually appeared to diverge

Too few active members in Working group

Many differences were between just two people

Insufficient expertise or interest from initial editors

Problems with SPARQL (EXISTS, pre-binding)

Little buy-in from commercial SPARQL implementors

Essentially only TopQuadrant

Implementation only at candidate recommendation stage is not helpful

References

Shapes Constraint Language (SHACL): https://www.w3.org/TR/shacl/1.

Shape Expressions: https://www.w3.org/2001/sw/wiki/ShEx2.

Shape Expressions Semantics: Slawek Staworko, Iovka Boneva, Jose

E. Labra Gayo, Samuel Hym, Eric G. Prud'hommeaux, and Harold

Solbrig. "Complexity and Expressiveness of ShEx for RDF". ICDT 2015.

3.

Description Logic Constraints: J. Tao, E. Sirin, J. Bao, and D. L.

McGuinness. "Integrity constraints in OWL". AAAI-2010.

4.

Description Logic Constraints for RDF: Peter F. Patel-Schneider.

"Using Description Logics for RDF Constraint Checking and

Closed-World Recognition". AAAI-2015.

5.

SPIN Constraints: http://www.topquadrant.com/technology/sparql-rules-

spin/spin-constraints/

6.

Stardog ICV: http://docs.stardog.com/icv/icv-specification.html7.

SPARQL 1.1 Query Language: https://www.w3.org/TR/sparql11-query/8.

SPARQL EXISTS problems: Peter F. Patel-Schneider and David Martin.

"EXISTSential Aspects of SPARQL". ISWC 2016.

9.

