

Methods and Metrics for Knowledge Base Engineering

Giorgos Stoilos, <u>David Geleta</u>, Szymon Wartak, Sheldon Hall, Mohammad Khodadadi Babylon Health

Yizheng Zhao, Ghadah Alghamdi, Renate Schmidt University of Manchester

© babylon: private and confidential

Digital Healthcare services via a Phone App

GP consultation 1 every minute, 24/7

Al-based chatbot 3 interaction every minute

How is it done?

• Various background Al-based services

- User text processing (NLP, NLU)
- Intention detection, data analytics (ML)
- Symptom Checking Engine (PGM)
- GP-portal
- User Profiles

At the core: Medical Knowledge Base

- Provides common vocabulary
- Formal rich semantics
- Standardisation (coding systems, SNOMED, ...)
- Reasoning Services [Thursday, 11th, Posters, Merrill Hall]

[Thursday, 11th, in-use track, 14:40-15:00]

Constructing Babylon KB

- Ontology Integration
 - Start from a seed ontology KB_0
 - Enrich it iteratively with new sources
 - Matching (m)
 - "Copying" Axioms (labels, relations, subClassOf)

[Friday, 12th 11:40, Merrill Hall]

 KB_{t+2}

- Information Extraction
 - From web resources
 - Bibliography
 - Unstructured text

Problem Statement

Enrichment is good but can introduce

- Logical or structural changes
 - inconsistencies, change in service behaviour
- Relation misuses
- data from IE
- Lexical changes
 - Synonym overlaps \rightarrow ambiguity

which may negatively affect services

- Goal: Monitor/analyse how KB evolves
 - Logical, structural, lexical changes
 - Information gain after integration (did KB improve?)
 - Visualise differences, pinpoint areas of great change

All these at a great scale!!

Previous Approaches

Linked Data Analysis

- [Ngomo et al., Zaveri]: focus on data quality (labels, trust, accessibility)
- Rashid et al.: focus on property assertion evolution.

Ontology Evaluation

- Gangemi: focus on graph-structure (paths, fan-outness, depth, etc.)
- Vrandecic: focus on ontology domain modelling.
- Some metrics are suitable but need custom ones

Coherence

for every $A \in KB, KB \not\vDash A \sqsubseteq \bot$

• practical implementation using SPARQL over GraphDB:

 $no \ A \ s. t. \ KB \vDash_{rdfs} A \sqsubseteq C \sqcap D, \qquad C \ disjointWith \ D$

Entailment Invariability/Conservativity [Konev, Jiménez-Ruiz]

• Measures how much ⊑-entailments changed

 $LDiff(KB_t, KB_{t+1}) \coloneqq \{A \sqsubseteq B \mid KB_{t+1} \vDash A \sqsubseteq B \text{ and } KB_t \not\vDash A \sqsubseteq B\}$

- Implementations
- Scalable but approximate based on SPARQL ($LDiff_{rdfs}$)
- Optimised expressive uniform-interpolation $A \perp C$ [Zhao; submitted] (*LDiffalc*)

Graph-based Invariability

• Tangledness [Cangemi06]: characterises multi-hierarchical nature of KB

$$tang(0):=\frac{|Concepts|}{|A | A \sqsubseteq C_1, A \sqsubseteq C_2|}$$

- single number; too coarse, not very informative
- Where do forks re-join

$$tang(A) \coloneqq \{ E \mid A \sqsubseteq C_1, A \sqsubseteq C_2, E \in lcs(C_1, C_2) \}$$

how many fork/re-joins below a class

 $tang_{\downarrow}(A) \coloneqq \Sigma \{ tang(C), KB \vDash C \sqsubseteq A \}$

- Label Integrity / Ambiguity
 - Set of labels that appears in different classes

ambig(T) := { $\ell \mid \langle A_1 \text{ skos: label } \ell \rangle$, $\langle A_2 \text{ skos: label } \ell \rangle$ }

Heuristics to eliminate ambiguity

Information Change (Completeness Assessment)

Population of relations and classes

Relations

 $usage(R) \coloneqq \{ \langle A R B \rangle \mid A \text{ in the domain or } R \text{ and } B \text{ in its range} \}$

Classes

 $undef(A) \coloneqq \{R \mid A \text{ a descendant of a domain or } R\}$

Diseases are domains of hasSymptom, treatedBy, causedBy, ...

Inspecting Metrics output

OntoDiff

Added nodes	Deleted n	odes	Matched nodes	Label	changes	Structure cl	hanges	Sem type changes	Semantic relation changes	
Lexical relation	changes	All rela	ition changes	Nodes to	o inspect	Reset filter				
Next Node Pr	evicus Node	e								
Class Valid	ation									
					Managaral	ata haamida 2	E	al tablat		
earch KB labels					meperizon	ate promite z	a mg or	ar techtet		
					id			"Jq2tXS-oGs"		
SNOMED CT Concept	87 8 8 8k 8				narante			Managoniata: Managon	alata bramida: Draduct	
Allerben product z 0 el 48 0 77 00450					parents			manufactured as oral dosage form; Virtual medicinal		
Analgesic 3 8 8 NEW	0 543 0 54							product;		
Anti-infective agent	1 8 E 14 8 14				otherAnces	stors		Antimuscarinic; SNOM	ED CT Concept; UK product;	
Antiallergenic drugs	B B 155 0 17	12 💼 💷						Autonomic drug; Gastr agent: Antispasmodic:	ointestinal drug; Anticholinergic Pharmaceutical / biologic	
Antianhythmic drug 3	8 9 151 Q 15	a 💼 🚥						product; Virtual thera	peutic molety;	
Antineoplastic agent	3 2 2 326 6	338 📴 👪						front of a state	(a	
Antiplatelet agent	C 52 0 53				semiypebi	at .		, root i firit a i	L L KONDO	
Antivaricose agent		18			sourcesBe	fore		n		
Autonomic drug s 2 6	a 487 🗿 311 🦉									
Antispasmodic 2 0 0					sourcesAft	er		0		
Antimuscarinic					subtreeSou	ircesDiff		0		
Atropine 1 8 8 22 8	22							u		
Clidinium 1 2 0 1 2	2 🛛 2				labelDiff			* "root" : () 8	í t como	
Mepenzolate 1 2 3	0 2 🗖 3									

Building the Babylon KB

- Which ontology to use as a "seed"
- Which sources to integrate (their quality, label ambiguity)?
- Used metrics to understand data sources

	SNOMED	NCI	MeSH	MedDRA	CTV3	ICD-10	Read2	FMA
Classes	340 995	133 239	28 474	24 603	322 300	44 539	89 618	104 438
Count(tang>0)	118 120	12 529	7 950	8 248	10 092	0	0	0
ambig	1 072	4 873	0	5	24 960	708	1 139	261
-								

- Snomed is the most multi-hierarchical; MeSH/MedDRA almost all re-join points (lcs) owl: Thing
- ICD-10, Read2 have 0 (they are coding/classification systems); NCI low (was initially a thesaurus)
- NCI, CTV3 Highly ambiguous ; synonyms used in a loose way; cannot use them safely in matching

The Babylon KB

	SNOMED	+NCI	+CHV	+FMA
Classes	340 995	429 241	429 241	524 837
Properties	93	124	124	219
subClassOf axioms	511 656	617 542	617 542	713 313
objProp assertions	526 146	664 742	664 742	962 190
dataProp assertions	543 416	946 801	1 043 874	1 211 459
Ambiguity	1072	5768	9207	9811
Ambiguity-repair	180	1266	1892	2078

• *LDiff* kept to Ø, Ambiguity reduced via heuristics

Advanced *LDiff* for SNOMED extensions

Several country extensions: Australian-snmd, Canadian-snmd

- Can we seamlessly integrate them in the KB?
- Are they conservative extensions of SNOMED?
- Used *LDiff* alc
 - $LDiff_{alc}(Snomed, Snomed_{cnd}) = \emptyset$ $\textcircled{$\odot$}$
 - Safely enriches snomed with additional labels and classes (no hierarchy changes)
 - $|LDiff_{alc}(Snomed, Snomed_{austr})| = 67 \otimes$
 - Even the case that $A \sqsubseteq B \in SNOMED$ is $B \sqsubseteq A \in SNOMED_{austr}$

Thanks!

Questions?