
A Pattern For Interrelated Numerical Properties

Jesper Zedlitz1, Hagen Peters2, and Norbert Luttenberger2

1 German National Library of Economics (ZBW)
2 Christian-Albrechts-Universität zu Kiel

Abstract. “A childs year of birth is always greater than the year of
birth of its parents.” – it is not easily possible to code this simple know-
ledge into a pure OWL ontology, i.e. without using any additional rule
languages. Therefore it is not easy in OWL to detect semantic violations
in this kind of statements. The two challenges are putting two orders
(“greater” and “parent”) into relation and representing integers as indi-
viduals allowing a reasoner to infer knowledge about the “greater” rela-
tion. In the first part of this contribution we show a pattern for putting
two transitive and asymmetric orders into a relation, such that conflict-
ing information results in an inconsistent ontology. In the second part we
present a pattern for expressing integers using their binary code. Due to
the special construction a reasoner can infer knowledge about the rela-
tion between all integers in the ontology. By combining the two patterns
we are able to represent the initial statement in an ontology.

1 Introduction

The Web Ontology Language (OWL) makes a deliberate distinction between
object properties of objects and data properties of objects. Data properties are
designed to take a certain value from a range that is defined by the associ-
ated data type. However, the OWL specification does not go beyond sheer value
assignment—no other operations are foreseen for the values of data properties.
During the design phase of OWL 2, a number of authors therefore brought for-
ward “wish lists” for different kind of operations on the values of data properties:

– Pan and Horrocks [1] propose the idea to enable calculations with data prop-
erty values.

– In Use Case #10 of the W3C Working Draft [2] the value—not just the
presence—of a data property is intended to be used for classification of in-
dividuals into classes.

– Grau et al.[3] list four kinds of operations to be provided for data property
values. Among these is the requirement that it should be possible to express
relations between values of data properties on different objects.

Although OWL’s current version OWL 2 brought a number of enhancements
to data type handling, the situation basically remained the same: the cited W3C
Working Draft states that none of these wishes has been accepted for OWL 2.

Instead—in order to separate logical reasoning and handling of data values—
the decision was taken to concentrate all data value handling inside the Semantic
Web Rule Language (SWRL)1 and its “built-ins”. Integrated processing of OWL
ontologies and SWRL rule sets accordingly requires software systems that com-
prise both a reasoner and an oracle for these built-ins. However, it obviously
depends on the oracle’s implementation how SWRL rules are evaluated (open
vs. closed-world processing, data types). Furthermore the semantics of SWRL
built-ins is outside the OWL ontology semantics.

In this paper, we present Logical Ontology Design Patterns (ODP) [4] for
evaluating certain relations between values on different objects and for repre-
senting values from the range of integers as individuals in the ontology. Using
these patterns semantic violations in data sets can be detected during consis-
tency checks.

This paper is organized as follows: In section 2 we describe the class of prob-
lems we want to address and discuss other approaches to the problem. For clarity
we split our solution into three separate parts: Section 3 presents an ODP for
putting two orders into a relation. Section 4 presents our ODP for representing
integers. In section 5 we introduce a third ODP that combines both previous
ODP and prove the correctness of our approach. Section 6 concludes and points
out open questions. We give examples written in OWL 2 functional-style syntax
[5] where appropriate.

2 Problem Description & Approach

Fig. 1. Example of the problem we address.

As an example for the kind of problems we want to address let us take a look
at this situation: A person P1 has an isChildOf relation to another person P2.
Each of the persons has a relation isBornIn to its year of birth. This information
is coded in an OWL 2 ontology. The ontology shall only be consistent if the year
of birth of P1 is greater than the year of birth of P2: “A child’s year of birth
is always greater than the year of birth of its parents.” Figure 1 illustrates this
example.

There are several ways known to model the above mentioned situation and
to express the relation of birth years of parents and their children. One could

1 http://www.w3.org/Submission/SWRL/

use rule languages like SWRL to express this knowledge. But there are only a
few reasoners that (fully) support rules at all and many different rule languages
are used. Furthermore, as mentioned in the introduction, at least parts of the
semantics of the rule languages is outside of the semantics of OWL. Therefore
the evaluation of these parts is rather asking an oracle (i.e. using the specific
implementation) than OWL reasoning. For example, the specification of data
types in SWRL allows for different implementations in terms of precision of
decimals.2 Hence two different reasoners, both supporting the same parts of
OWL and being compliant to the SWRL specification could evaluate the same
ontology differently.

For this reason we focus on approaches that only use pure OWL evaluation.
There are two main approaches to express relations between natural numbers (in
the following “integers” w.r.t. common data type definitions) as in our example:
representing integers as literals and representing integers as individuals.

Representing integers as literals The common way to model the above
scenario with integers represented as literals is to use data properties for the
year of birth and a combination of restrictions on object and data types to
detect semantic violations. Listing 1 shows a restriction for the individual named
“GeorgeV” requiring his father’s birth year to be before 1865.

1 Declaration (NamedIndividual (: EdwardVII))
2 Declaration (NamedIndividual (: GeorgeV))
3 ClassAssertion (
4 ObjectAllValuesFrom (: i sCh i ldOf
5 DataAllValuesFrom (: i sBornIn
6 DatatypeRestriction (xsd : i n t e g e r xsd : maxExclusive
7 ”1865”ˆˆ xsd : i n t e g e r)
8)
9)

10 : GeorgeV
11)
12

13 DataPropertyAssertion (: i sBornIn : GeorgeV ”1865”ˆˆ xsd : i n t e g e r)
14 DataPropertyAssertion (: i sBornIn : EdwardVII ”1841”ˆˆ xsd : i n t e g e r)
15 ObjectPropertyAssertion (: i sCh i ldOf : GeorgeV : EdwardVII)

Listing 1. Using data properties and data type restrictions

However, although this approach seems more or less obvious it suffers from
two major disadvantages:

1. No general statements about birth years of parents and children are made,
but for each child the maximum birth year of its parents has to be speci-
fied. That requires additional axioms for each individual that belongs to the
ordered set.

2. Now there is a restriction on the parent’s birth year but there is no formal
correspondence between this restriction (line 7) and George’s birth (line 13).
That means, the ontology could also be consistent if one restricts the parent’s

2 “All minimally conforming processors must support decimal numbers with a mini-
mum of 18 decimal digits” from http://www.w3.org/TR/xmlschema-2/ section 3.2.3

birth year to a maximum value of 1865 (line 7) while (in line 13) George’s
birth year is (e.g. by mistake) set to 1800, which is obviously not intended.

In summary, with this approach we are not able to express a general state-
ment about the relation of the years of birth of parents and their children but
have to express that knowledge for each of the parent-child relations explicitly
(1). Furthermore, this approach still allows for semantic violations (2).

Representing numbers as individuals Other authors propose the use of
resources (i.e. OWL individuals) rather than literals for the representation of
numbers. [6] shows several advantages of this approach. Most interesting for
our problem is the possibility to reason about relations between these number
individuals and other individuals of the ontology. However, in this approach
the name (IRI) of an individual is used to encode some knowledge about the
resource. Since names of individuals are meaningless character sequences in terms
of formal reasoning, it is a priori not possible to use the knowledge encoded in
the individual’s names during the reasoning process.

Another approach for representing an integer n is to specify the predecessor
(and/or successor) of n. Using this approach implies, that if a particular integer
n is needed in the ontology all n− 1 predecessors must be part of the ontology,
too. Thus the representation of an integer depends on other individuals that
are (or aren’t) contained in the ontology. This obviously implies that adding an
integer representing individual is a non-trivial task and requires full knowledge
of the ontology.

It might also be possible to represent an integer n by using an individual
having n properties and adding appropiate cardinality constraining axioms. In
both approaches, using predecessors as well as n properties, the number of axioms
needed to represent a single integer scales linearly with the value of the integer.

Thus these approaches require large maintenance effort (adding statements
about numbers not actually used, changing the definition of previously defined
numbers, etc.) and knowledge about already existing integers in the ontology.
Furthermore the linear dependency between the value of an integer and the
number of axioms needed in the ontology makes these approaches impractical
for many scenarios.

Our approach In our approach we want to use individuals to represent integers.
Our goal is to find a pattern where

1. the number of axioms needed for representing a single integer depends only
logarithmically on the value of that integer (like the usual binary or decimal
representation),

2. the representation of an integer is independent of whether or not other inte-
gers already exist in the ontology, and

3. it is possible to reason about integers based on their representation.

Once we found that pattern we’ll be able to detect “direct” semantic violation
of the order of integers, e.g. having two integers 3 and 4 and an the explicit
statement like “3 is greater than 4”.

However, that is not enough for our initial problem, i.e. detecting semantic
violations on birth years of parents and their children. In this problem we want
to detect “indirect” semantic violations, e.g. person P1 is the child of person P2,
but P2 is born before P1. In other words, we have to detect semantic violations
between two orders (the order given by birth years isGreater and the order
given by the child relation isChildOf) that are connected by another property
(isBornIn).

In the next section we show a pattern putting two orders into relation. Section
4 describes our pattern for integer representation.

3 Comparing Two Orders

The first part of our solution is a pattern for putting two arbitrary orders into
relation. To outline that this pattern is not restricted to numerical values we
use another example here. In Fig. 2 the individuals depicted with black-filled
circles represent (in this case non-numeric) time data. The isYoungerThan object
property establishes an order on these individuals. Analogously the individuals
depicted with white-filled circles (in Fig. 2: tools) were put into an order using the
isSuccessorOf property. The isToolOfThe object property connects individuals
of the one with individuals of the other order, i.e. tools with ages.

Fig. 2. Comparing two ordered sets of individuals.

The ontology should be inconsistent if two individuals in one order are con-
nected to two individuals with inverse order. The trick is to use one of the
order-building properties to infer knowledge about the other one. This can be
achieved by using a chain of object properties:

isToolOfThe− ◦ isSuccessorOf ◦ isToolOfThe→ isY oungerThan

To compare not only neighboring individuals in each order it is necessary to
declare transitivity for (at least) one of the relations. In our example this would

be:

isY oungerThan(x, y) ∧ isY oungerThan(y, z)→ isY oungerThan(x, z)

3.1 Asymmetry

Furthermore, if contradicting information should result in inconsistency it is
necessary that the following holds:

∀x, y : isY oungerThan(x, y) =⇒ ¬isY oungerThan(y, x)

This could be achieved by marking the isY oungerThan object property asym-
metric. Unfortunately this is not possible in OWL 2, because to guarantee de-
cidability[5, sec. 11.2] an object property must not be transitive and asymmetric
at the same time.

Fig. 3. (Negative) Object Property Assertions.

However, for the known individuals in the ontology it is possible to assure
asymmetry by inserting negative object property assertions. To ensure that
¬p(Ia, Ib) holds for arbitrary b > a, surprisingly only n − 1 negative object
property assertions are necessary for n ordered individuals: The upper half of
Fig. 3 shows the situation where object properties (depicted by solid arrows)
are used to represent an order on individuals I1 . . . In. To ensure asymmetry on
I1 . . . In it is sufficient to only insert negative object property assertions between
neighboring individuals (depicted by dashed arrows in the lower half of Fig. 3):

Assume the assertion p(I1, In) is part of the ontology sketched above (Fig. 3).
Then the following inferences can be made:

p(I1, In)
p(In,In−1)−−−−−−−→ p(I1, In−1)

p(In−1,In−2)−−−−−−−−→ . . .
p(I3,I2)−−−−−→ p(I1, I2)

This is a contradiction to ¬p(I1, I2). �
Thus for every x, y with isY oungerThan(x, y) holds ¬isY oungerThan(y, x),

stated either explicitly or implicitly.

3.2 Summary I

We have now defined a pattern that enables us to put two orders defined on two
sets of individuals—not necessarily integers—into relation. If one of the orders

contains individuals representing integers and the relation is a natural ordering
on integers this technique solves part of our initial problem. It is just necessary
to list the needed integers in the ontology instead of all integers in between. If n
integers are used, 2(n− 1) object properties are required to model the order in
the ontology. A semantic violation in the specified ordering makes the ontology
inconsistent.

The main disadvantage of this pattern is the fact that an individual has
no formal relation to the value it is intended to represent (except for the label
which is not part of the knowledge included in reasoning process). If one needs
to insert an individual representing a specific value (lets say the “copper age”
in Fig. 2) this is not possible without additional knowledge about the already
existing individuals (e.g. the individual labeled “bronze age” is younger than
“copper age”). Without additional knowledge it is only possible to insert an
individual that is known to represent a new minimal or maximal value.

4 Integer Representation

In the second part of our solution we use a pattern that constructs classes con-
taining information about the relation of integers in the ontology. We represent
an integer in the binary numeral system with a predefined bit-length. Figure 4
shows every four-digit integer as a leaf of a binary tree (the gray shaded areas
can be ignored for now). The binary representation of an integer is given by the
path from the root to the leaf. The natural “greater than” order is given by the
order the leaves appear in a depth-first tree traversal.

Fig. 4. Binary tree.

Let In denote an individual that represents the integer n in the ontology.3

Let Ci.0 denote the class of integers with the ith bit being zero. Let Ci.1 denote
the class of integers with the ith bit being one. (The least significant bit is bit
zero.)

3 We expect that there could be more than one individual in the ontology representing
a given integer.

We put each required integer into its respective classes, e.g. for the individual
“two”.

I2 ∈ C3.0, I2 ∈ C2.0, I2 ∈ C1.1, and I2 ∈ C0.0.

ClassAssertion (: 3 . 0 :Two)
ClassAssertion (: 2 . 0 :Two)
ClassAssertion (: 1 . 1 :Two)
ClassAssertion (: 0 . 0 :Two)

Listing 2. Representing the 4-bit integer 2

Note that “two” is just an arbitrary label for an individual representing
integer 2. It would not make any difference to label the individual e.g. “MyPer-
sonalTwo”.

Now we can define a class that contains all individuals that represent the
same integer by an intersection of the classes of the binary digits, e.g. for the
integer 2:

Cequal.2 = C3.0 ∩ C2.0 ∩ C1.1 ∩ C0.0

SubClassOf (
ObjectIntersectionOf (: 3 . 0 : 2 . 0 : 1 . 1 : 0 . 0)
: Equal2)

Listing 3. Class containing all individuals representing integer 2

It is easy to see that two individuals representing the same integer n in the
ontology belong to the same class Cequal.n. We note this observation as

Lemma 1 Let Ia be an individual in the ontology representing the integer a and
Ib be an individual representing the integer b. Let a = b. Let the ontology contain
axioms following the construction rules mentioned above. Then Cequal.a(Ib) is
also entailed by the ontology.

The class Cgreater.n (which contains all integers greater than n) are unions
of sub-trees of our binary tree (see Fig. 4): According to the construction rules
of the tree it holds for every sub-tree that all leafs that are descendants of the
right child node (“1”) are greater than every leaf that is a descendant of the left
child node (“0”).

Thus whenever the path representing an integer n follows a 0-edge all leafs
that can be reached via the corresponding 1-edge must be included into Cgreater.n.
The set of leafs that can be reached via the 1-edge can be easily written as an
intersection of binary classes.

As an example consider the construction of Cgreater.2. The elements of the
union can clearly be seen in Fig 4.

Cgreater.2 ⊆ C3.1 ∪ (C3.0 ∩ C2.1) ∪ (C3.0 ∩ C2.0 ∩ C1.1 ∩ C0.1)

SubClassOf (
ObjectIntersectionOf (: 3 . 1)
: GreaterThan2)

SubClassOf (
ObjectIntersectionOf (: 3 . 0 : 2 . 1)

: GreaterThan2)
SubClassOf (

ObjectIntersectionOf (: 3 . 0 : 2 . 0 : 1 . 1 : 0 . 1)
: GreaterThan2)

Listing 4. Class containing all individuals representing integers greater than 2

For every integer n used in our ontology we have to declare that any integer
that is equal n must not be greater than n:

Cequal.n ∩ Cgreater.n = ∅

DisjointClasses (: GreaterThan3 : Equal3)

Listing 5. Definition of strictly greater

Following these construction rules knowledge about the relation of integer
representing individuals can be inferred: An individual representing an integer
greater than n belongs to the class Cgreater.n. We note this observation as

Lemma 2 Let Ia and Ib be two individuals in the ontology representing integers
a and b (with b > a). Let the ontology contain axioms following the construction
rules mentioned above. Then Cgreater.a(Ib) is also entailed by the ontology.

Summary II

In contrast to the restriction of the first pattern of our solution the second pattern
does not require any knowledge about the existing integers in the ontology when
adding an individual representing an integer. It is only necessary to follow the
named construction rules. Individuals representing integers are automatically
put into relation with each other. There is only a linear relation in the number
of assertions needed to represent an integer and the number of bits used for the
binary representation. The setting of a bit length specifies a maximal number.
However, using a defined bit length is very common for computer systems.

The pattern introduced above establishes only relations between individuals
and classes not between individuals and object properties which are needed for
our initial problem. We address this “gluing problem” in the next section.

5 Putting It Together

Now we can use the information from the classes as constructed in section 4
to establish an order on the integer individuals. The main problem is to create
a link between the greater object property and classes. Our solution has been
inspired by [7]. Formally written we need:

Cgreater.n = {x|∃y : greater(x, y) ∧ Cequal.n(y)}
∪{x|∃y : greater(x, y) ∧ Cgreater.n(y)}

It is not possible to state this linking of object properties and classes directly
in OWL 2. However, by carefully using the EquivalentClasses class axiom and
the class expressions ObjectUnionOf and ObjectSomeValuesFrom it is possible
to make an equivalent statement. In OWL 2 functional syntax this axiom has to
be added:

EquivalentClasses (
: GreaterThanY
ObjectUnionOf (

ObjectSomeValuesFrom(: g r e a t e r : EqualY)
ObjectSomeValuesFrom(: g r e a t e r : GreaterThanY)))

Listing 6. Connection between the greater object property and classes

If this axiom and the class definitions shown above are included in the know-
ledge base, the existence of a greater property between two individuals classifies
the individuals into the according “GreaterThan” classes. This knowledge about
the greater relation can be used in combination with the first part of our ap-
proach. For the generic example sketched in Fig. 5 the following axioms would
be part of the corresponding ontology:

Declaration (Class (: Number))
Declaration (ObjectProperty (: s))

Declaration (ObjectProperty (: r))
ObjectPropertyRange (: r : Number)

SubObjectPropertyOf (ObjectPropertyChain (ObjectInverseOf (: r) : s : r)
: g r e a t e r)

Listing 7. Infer greater property

All integer individuals which are connected by the above mentioned property
chain are put into a greater relation. Based on this relation the integer individuals
are classified into the “GreaterThan” classes. Thereby individuals and object
properties are “glued”.

As shown in section 4 the integer individuals are already classified into
“GreaterThan” classes based on their construction. Thus a semantic violation
regarding the order of individuals or the connection to the individuals repre-
senting integers leads to contradicting classifications. In combination with the
disjoint classes axioms this leads to an inconsistency in the ontology. In the next
section we show this formally.

5.1 Proof

Fig. 5. Sketch of the ontology used in the proof. The “order” is given by object property
s, the individuals are X and Y and the integers are Ia and Ib. X and Y are connected
to the integers via property r.

To show the correctness of our approach we consider an ontology constructed
following the rules above and sketched in Fig 5. It consists of two individuals X
and Y that are connected via an object property s(X,Y). The two individuals
Ia and Ib represent two integers a and b. X and Y are connected with these
integers representing individuals via an object property r.
DisjointClasses (: GreaterThanA : EqualA)
EquivalentClasses (

: GreaterThanA
ObjectUnionOf (

ObjectSomeValuesFrom(: g r e a t e r : EqualA))
ObjectSomeValuesFrom(: g r e a t e r : GreaterThanA)))

DisjointClasses (: GreaterThanB : EqualB)
EquivalentClasses (

: GreaterThanB
ObjectUnionOf (

ObjectSomeValuesFrom(: g r e a t e r : EqualB))
ObjectSomeValuesFrom(: g r e a t e r : GreaterThanB)))

Listing 8. Application of listings 5 and 7 for the example of Fig. 5.

Listing 8 can be written formally as:

Cgreater.a ∩ Cequal.a = ∅ (1)

Cgreater.a = {x|∃y : greater(x, y) ∧ Cequal.a(y)} (2)

∪{x|∃y : greater(x, y) ∧ Cgreater.a(y)} (3)

Cgreater.b ∩ Cequal.b = ∅ (4)

Cgreater.b = {x|∃y : greater(x, y) ∧ Cequal.b(y)} (5)

∪{x|∃y : greater(x, y) ∧ Cgreater.b(y)} (6)

Using the property chain (described in section 3) axiom (cf. listing 7) we can
infer:

r(X, Ia)− ∧ s(X,Y) ∧ r(Y, Ib)⇒ greater(Ia, Ib) (7)

By construction Cequal.a(Ia) and Cequal.b(Ib) always hold. According to the on-
tology depicted in Fig. 5 in every case greater(Ia, Ib) is inferred (formula 7). We
have to distinguish three cases:

1. a > b: Cgreater.b(Ia) (lemma 1)

greater(Ia, Ib) ∧ Cequal.b(Ib)
(5)

=⇒ Cgreater.b(Ia)

2. a = b: Cequal.a(Ib) (lemma 1)

greater(Ia, Ib) ∧ Cequal.a(Ib)
(2)

=⇒ Cgreater.a(Ia)

This is a contradiction to (1) with Cequal.a(Ia).
3. a < b: Cgreater.a(Ib) (lemma 2)

greater(Ia, Ib) ∧ Cgreater.a(Ib)
(3)

=⇒ Cgreater.a(Ia)

This is a contradiction to (1) with Cequal.a(Ia).

Thus, the semantic violations in cases (2) and (3) result in an inconsistent on-
tology.

6 Conclusion

In this contribution we present a pattern for putting two orders into relation and
a second pattern for representing integers as individuals of an ontology. Follow-
ing the simple construction rules allows for inference of relations between these
individuals. The combination of both patterns can be used to detect contradict-
ing information regarding the two orders. If the ontology contains contradicting
information the ontology will become inconsistent. The correctness of our com-
bined pattern is shown in section 5.1.

Our patterns might be beneficial for verification purposes. When testing the
performance of the consistency check using test ontologies it turns out that
our pattern is not adequate for representing huge amounts of different integers.
However, on the one hand in many use cases the time complexity is not worse
than a solution that uses only data properties and on the other hand many
use-cases do not require many different integers, like the one sketched in Fig. 2.

The authors are aware of the fact that it is possible—if you do not follow the
construction rules for integer individuals and relations between them—to create
an ontology that is consistent although the represented information contains a
semantic violation—for example if statements in listing 2 do not match state-
ments in listings 3 and 4. A solution would be to infer the relations between
integer-representing individuals directly from the representation of these inte-
gers, but there are some indications that this is not possible. However, it is an
open problem to prove this.

Another interesting question would be to investigate if it is possible to model
the relation between more than two integers using OWL 2. That could be used
to express and check relations that include arithmetic operations. If it should be
possible, variants of the initial statement could also be expressed: “A child’s year
of birth is always at least 10 years greater than the year of birth of its parents.”

References

1. Pan, J.Z., Horrocks, I.: Web Ontology Reasoning with Datatype Groups. In: Proc.
of the 2nd International Semantic Web Conference. (2003) 47–63

2. Golbreich, C., Wallace, E., Patel-Schneider, P.: OWL 2 Web Ontology Language:
New Features and Rationale. W3C working draft (2009)

3. Cuenca Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler,
U.: OWL 2: The next step for OWL. Web Semantics: Science, Services and Agents
on the World Wide Web 6(4) (2008) 309–322

4. Gangemi, A., Presutti, V.: Ontology design patterns. Handbook on Ontologies
(2009) 221–243

5. Motik et al. (eds.): OWL 2 Web Ontology Language: Structural Specification and
Functional-Style Syntax. W3C Recommendation (2009)

6. Champin, P.: Representing data as resources in RDF and OWL. Proc. of the 1st
Workshop on Emerging Research Opportunities for Web Data Management (2007)

7. Tsarkov, D., Sattler, U., Stevens, M., Stevens, R.: A solution for the Man-Man
problem in the Family History Knowledge Base. In: Proc. of the 5th International
Workshop on OWL: Experiences and Directions. (2009) 23–24

