Worked Example: Veterinary Syndromic Surveillance

Methods and Tools for Modular Ontology Modeling, Part 3

Karl Hammar
The Project

- What is Veterinary Syndromic Surveillance?
- Animal Health Surveillance Ontology, AHSO
- AHSO Purposes:
 - Early warning systems
 - Data integration for reporting to EU agencies
 - Data entry assistance in various support systems
- Development team: 1 core member, 2-3 co-devs, 2-3 hangarounds (all part-time)
- Developer skills: veterinary science, biology, statistics
- Ontology Engineering novices at the outset but learning rapidly
AHSO Development 2015-2018

- Year 1-2:
 - Developing an understanding of tools/technologies/tradeoffs, ontology engineering, building network, finding stakeholders, etc.
 - Studying existing ontologies, their advantages and disadvantages.
 - Prototyping through eXtreme Design workshops.
 - Initial use cases: only in epidemiology.

- Year 3-4:
 - Real ontology development started.
 - Additional national and EU funding obtained, additional use cases developed.
 - eXtreme Design and ODPs used as aids in development but not followed in detail.
 - Karl comes on board to help veterinarians with development work (for both the ontology and tooling to construct/consume it).
AHSO Today

- 37 classes, 31 object properties, 7 datatype properties
- DL expressivity: ALIF(D)
 - I.e., base language + inverses + functional properties + datatype properties
- In need of refactoring
 - But work so far has clarified requirements and been useful all the same
- https://github.com/SVA-SE/AHSO
- http://w3id.org/ahso
- https://nandadorea.gitbooks.io/ahso/
owl:Thing
- 'Geographical Information'
 - 'Health and surveillance actors'
 - 'Animal owner'
 - Veterinarian
- Observation
 - Birth
 - Death
 - 'Fallen stock'
 - 'Fallen stock destroyed on farm'
 - 'Fallen stock not destroyed on farm'
 - Declared movement
 - Pathological examination
 - 'Ante Mortem Pathological Examination'
 - 'Post Mortem Pathological Examination'
 - Slaughter
 - 'Home slaughter'
 - 'Stillbirth event'
 - Observation context
 - Necropsy
 - 'Registered Animal Movement'
 - 'Surveillance activity'
 - 'Surveillance system'
 - Population unit
 - Herd
 - Individual
 - Registry
 - 'Movement Registry'
 - Sample
 - Zoographical Information
 - 'Age Category'
 - Breed
 - 'Production Type'
 - Sex
 - Female
 - Male
 - 'Castrated male'
 - Species
- owl:topDataProperty
 - hasAgeInformation
 - hasAgeUnit
 - hasAgeValue
 - hasDOB
 - hasID
 - isRecordedOnDateTime
 - occursOnDateTime
- owl:topObjectProperty
 - containsRecordsOf
 - 'has context member'
 - 'contains observation'
 - 'contains sample'
 - 'has member activity'
 - hasAgeCategory
 - hasBreed
 - hasGeographicInformation
 - hasMember
 - hasProductionType
 - hasRecordInRegistry
 - hasSex
 - hasSpecies
 - hasSubject
 - hasSubjectAnimal
 - hasSubjectHerd
 - hasSubjectAgeCategory
 - hasSubjectBreed
 - hasSubjectProductionType
 - hasSubjectSpecies
 - 'is a member of context'
 - 'is sample of'
 - 'observed in observation context'
 - 'is member of system'
 - isBreedOfSpecies
 - isMemberOf
 - isObservedBy
 - isOwnedBy
 - isOwnerOf
 - isRecordedBy
Modelling Issues

- T-box / A-box conflation
- Multi-species Agents
- Observations/Samples/Contexts
T-box / A-box conflation

Symptom: expressing data requires that classes be treated as values.

Causes (?): human “isA” insufficiently formal, not differentiating between subset and set membership. Lack of tree visualisation including members. Projects with unclear use cases. Reuse of existing taxonomies wholesale.

Resolution: Read W3C WG Note *Representing Classes As Property Values* from 2005 (Noy, Uschold, Welty). Consider OWL2 punning if needed.
Multi-species Agents

“Population unit” class and subclasses based on Martin Fowler’s *Accountability* pattern (from the book *Analysis Patterns*, highly recommended). *

Question: How do we ensure that herds only contain individuals of the same species?

Answer: We cannot: property chains cannot be used as cardinality restrictions (or be functional)
Observations/Samples/Contexts

Goal: representing attributes associated with animals/herds but recorded at some particular observation event.

Solution: Extend on Observation pattern (Blomqvist).

Problems: Boundary between Observation Context and Observation unclear - several object properties shared.

Shared property domain/range definitions incorrect (intersection, not union).
Reflections

- Underlying joint causes of errors:
 - Lack of hierarchy visualisation tooling
 - Lack of modular/folding ontology engineering tooling
 - Focus on formal correctness misses usability and common-sense correctness
 - Unintuitive RDFS domain/range semantics
 - Property chain limitations

- Some of these issues can be improved by better tooling: OPLa, ODPs, Protégé plugins, etc.
- Some require QA processes and user testing.
- Some might require new or modified standards.
- Some are unsolvable.